If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+29x=30
We move all terms to the left:
7x^2+29x-(30)=0
a = 7; b = 29; c = -30;
Δ = b2-4ac
Δ = 292-4·7·(-30)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-41}{2*7}=\frac{-70}{14} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+41}{2*7}=\frac{12}{14} =6/7 $
| 18u-8=0 | | 80=25x | | x+41=100 | | -u+231=45 | | 14-5x=2× | | 193-w=130 | | 2x-3(x+1)=5x-8 | | 4.50+.2x=3.60+.75x | | 6(x-3)+6=6x+7 | | (1+x)^5=1.66 | | 2(y-8)=40 | | -3/2+m=-19/4 | | 18-2t=5t+9 | | 6m+2m+3=5 | | 〖9x〗^4+16=0 | | 0.213=10^-3*x+0.0300 | | y=10^-3*0.213+0.0300 | | X-9+7x=39 | | X-9=7x | | y=09*0.0156-1E+07 | | 17+3s=-4 | | y=09*0.011-1E+07 | | y=09*0.0056-1E+07 | | y=09*0.345-1E+07 | | y=09*0.205-1E+07 | | 200=x+x-68 | | y=09*0.211-1E+07 | | y=1E+09*0.266-2E+07 | | -(-7h+3)=-2(3h+5) | | 4x+4(x-3)+8=108 | | -12x^2+260x=0 | | y=09*0.266-1E+07 |